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1. INTRODUCTION

Let Cla, b} denote the space of real valued continuous functions defined
on [a, b], endowed with the uniform norm denoted by || ||. Let E,(f) be the
distance between the function f'e Cla, b] and the subspace of algebraic
polynomials of degree at most # and let E,*(f) be the distance from f to the
subspace of algebraic polynomials of degree at most # in which the coefficient
of x* is 0. This paper is devoted to the following problem: find the functions
Jfe Cla, b} for which
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Our work originated in a paper of Bak and Newman [1] on Muniz’s
theorem. This theorem [9, p. 197] states that the polynomials of the form
3 %0 @wx** are dense in C[0, 1] if
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In [1] the degree of convergence of such polynomials to a function
fe C[0, 1] is related to the modulus of continuity of £, w(f, ). Let A, —
A, > 2 in the above sequence and let E,4(f) = d(f, {1, x™, x%,..., x*]) be
the distance from f to the space generated by (1, x*, x%,..., x*»). Then

EAF) < Mo (1, exp (-2 )

for some constant M which does not depend on f If f(x) =={x — 1|,
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104 MAURICE HASSON

x € [0, 11, this theorem implies that E,*(f) < K/n for a constant K inde-
pendent of n. Indeed, let k be odd. Then

E () < d(f, [1, x2, x4,..., x*122)) < Mw (fa €Xp ( 2 [gﬂ 21k ))

1 K

<N (fi) <5

The proof is similar when k& is even. Also we know [5, p. 171] that E,(f) >

N/n with a constant N which does not depend on n. We conclude that, for

every integer k > 1,
Ef(x — % l)

im =22 < o0. 1.2

P E(x =) a2

On the other hand, the classical proof of Muntz’s theorem is based on the

formula [9, p. 196] which nges the distance d, , in L,[0, 1], between x™ and
x¥1, xP2,..., xP], where p; > —3Vi:

= lm—p;|
dn = (2m + 1)i/2 jnl m—+p;F1°

Now, let P, , @, be polynomials of degree at most n such that

H X — Pn(x)“ = Enl(x)
and

hx — Q’ﬂ(x)“Lg[O,I} = d[a__(x’ [1> Kseves xn])
We have

Ex) =[x — Pyl =l x — Pullz, = | x — Qu(®lz,

1123 n—1 K
=3Ris56 wrz o we "o b

for some constant K independent of »n. Clearly E,(x) = 0, » = 1.

These were the observations which led us to conjecture that, given £,
(1, D) holds if fe C7[0, 1] for r large enough, where CT{0, 1] is the subspace
of C[0,1] of rtimes continuously differentiable functions. Indeed, (1, 2)
shows that f must be sufficiently smooth in order for (1, 1) to hold.

The following notations will be used throughout: If fe Cla, b] and if
a <a <b <b,E[f, [a,b']) denotes the degree of uniform approximation
of fli. 7 by polynomials of' degree at most n. We write || f|lr, sy for
SUPgel v | f(X)]- Also P, , @, will always stand for aigebraic -polynomials
of degree at most n.
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II. THe ProBLEM OF COMPUTING Fe(x,)

One of the basic tools for the investigation of the asymptotic behaviour of
E5(F)JE(f) is knowledge of E,*(x").

THEOREM 2.1. Let k be an integer =1. Then there exist positive constants
Ny and M, with the following property: for every infeger n = 1,
Ny

7173? < Enk(xks [09 1]) <

My

E
s

The proof relies on the following lemmas.

Lemma 2.2, {1, x,..., x* 1 x® x"l 1 < k <, is a Chebychev system
on [0, 11.

Proof. It follows from Rolle’s theorem.

LEMMA 2.3, E(x*, [0, 1]) = k)] 22TP(—1D), 1 <k < n, where Tp(x) =
cos(n arcos x) is the nth Chebychev polynomial.

Proof. There exist n + 1 points on [—1, 1] where T, takes the values
+| T, l_y ;7 = -1 with alternating signs. So there exist n -+ 1 points on
[0, 1] where P,(x) = T,(2x — 1) takes the values -+ P, lljp..1 = +1 with
alternating signs. It follows from Chebychev’s alternation thecrem
[4, p. 30] and the preceding lemma that E,*(x*, [0, 1) = || —(1/a) Pn(x) -
x* — x® .11 = 1/ a;. |, where a;, is the coefficient of x¥in P,, , and the lemma
follows.

LEMMA 2.4,

e e G Vi
| T (~1)1—HW,

=1
where (2% — D11 = 1 -3+ 5 - (2k — 1).
Proof. | TE(—1)| = | T¥(1)| because 7, is either odd or even, and

T%)(1) equals the above product [7, p. 226].
Theorem 2.1 follows now from Lemmas 2.3 and 2.4.

THEOREM 2.5. Let k be an'integer >1. There exist positive constants N,
and M, such that, for every integer n = 1,

N

nk

< E (x5, [—1, 1] < Z‘: .
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Proof. We first show that E,*(x%, [—1, 1]) < M,/n*. Suppose that
n = k (mod 2). Let P,(x) = (k!/T{"(0)) T,(x). Then

k!
()

EFGF 11D <l —Pu(x) + x — x|l =
Now, from the relation {7, p. 226, Eq. (47)]
T = (m* — (k — D) T (0),
and from
T3w(0) = (=1,  Tonu(@ = (=D*m, m >0,
we find that
| TPO) = K", =1

It follows that

B L) <2 a,

Suppose now that n == k (mod 2). We have:

B 11D < B0 -1 1) < oy
< 1:,1“ , n>=2.
It follows that
E b, [—1,1]) < Alﬁ =12 Q.1

‘We now show the existence of a constant NN, such that

Eo =L >0 a1
Let P, , P,(0) = 0, satisfy

1P —xl = EX < 2B, n>1

Now

| Pa(x) — iazasm < Ky f| Pu(x) — X il < KMy
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by Bernstein’s inequality. It follows that

| Palli—1 /21701 < M, =12,
and

| PuCMli—1/2,1/21 < K, n=12,..,

again by Bernstein’s inequality. So we have

P <%, xelo, 711?”«]

;vQ} )

by the mean value theorem and the fact that 2,(0} = 0.
Again, by the mean value theorem,

X 1
Ps) = PO <5, xe[0, 5], 2>

Suppose that

1
P0) < g7 -

Then (2.2) implies

1 1 1
— ~
P ( 2Kn ) 2Kn [ = 8Kn
We have proved that

1
| Po(x) ~ X lltg,1/26m1 = K

so that

B, [-1,1) > 22

o7

2.2

We remark that we have actually proved: let P, be a sequence of polynomials
with Py(0) = 0 and || Po(x) — X l[q.c1 < C/n. Then [ Po(x) — X ls,a1 =
Djn (0 < a < 1). Now, let k be an integer =2 and let P, be a polvnomial

with P{(0) = 0 and

| Po(x) — x*| = E}x", [—1, 1]

(2.4)
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We have, by repeatedly applying Bernstein’s inequality,

| Pux) — x*fli—q,m

K , '
= 71 | Pa(x) — kxX* I qgama—am = (2.5)
KK, - Ky _
= 12 ko 2)) I Pr(Lk ”(x) —k!x ”[—-1+(Ic—71)/k.l—(k—l)/k]'

nmn—1 - (n—k—
But, again by Bernstein’s inequality and (2.1), we have

Clc

(k-1
I PP (x) — K x g -G md < -

The above remark and the fact that P¥'(0) = 0 yield

e D,
1P — K gt s 2 55 2.6)

(2.4), (2.5) and (2.6) show the existence of a constant N, such that, for every
integer » > 1 and for & > 2,

EM 1,1 > 2F. @

By (2.3), (2.7) is also true for k = 1. The proof of Theorem 2.5 is complete.

THEOREM 2.6. Let a < b and either a = 0 or b = 0. Let k be an integer
>1. Then there exist constants M, , Ny, such that

Ny

nek

< EXh [a,) <2 n=1,2,..

Proof. Suppose a = 0. The polynomial P,(x) = T,2x/(b — a) — 1) has
the alternation property (cf. proof of Lemma 2.3) on [a, #] and {1, x,..., x*1,
x#+1 . x™ is a Chebychev system on [a, b]. The proof of Lemma 2.3 shows
that E 5(x*, [a, b]) = k!/| PP(0)| and PP(0) = (2%/(b — a)¥) T (—1). The
theorem follows by Lemma 2.4. The proof is similar if » = 0.

THEOREM 2.7. Let a << 0 << b. Let k be an integer >1. Then there exist
constants My , Ny, such that

N

nk

M,
nk’

< E’nk(xka [a) b]) < n = 1, 2,... .
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Proof. The proof of Theorem 2.5 shows that our assertion holds for an
interval [—q, o] (@ > 0). The theorem follows from the relation

E)zk(xk, {_~‘x: 0‘]) < Enk(xkn [a, b]) < E?ak(xks {_IQ! ﬁ})
where « = min(jaf, |b|)and B = max((al, | 5 )).

Remark. 1f 0¢ [a, b], then E,*(x* [a, 6]) ~ 0 as n— o0, at an expo-
nential rate. Indeed {1, x,..., x*, x**1 .., x*} is a Chebychev system on
[a, b]. Consider the polynomial P,(x) = T,Q(x — a)/(b —a) — 1). e >0
orb < 0(and ¢ < b), then —1 < —1 — 24/(b — a), and our claim reduces
to estimating 7% at that point. From the fact that 7,{x) = cosh(z arc cosh x)
for x > 1[6, p. 5], we see that T")(«) grows exponentially for | x| > 1.
The assertion follows.

Let us notice that a good asymptotic majorant of E,*{x*, {0, 1]) could have
been derived from a proof of Muntz’s theorem [8], or by using methods of
functional analysis [2, p. 125]. However, these techniques do not yield a good
minorant which will be needed. Moreover, these techniques do not seem to
yield any information on E,*(x*, [—1, 1]).

III. AsyMPTOTIC BEHAVIOR OF EF(f)/E.{f)

The theorems of Section IT and knowledge of the behavior of the derivatives
of polynomials of best approximation [3] will be our tools in the investigation
of this problem.

The purpose of this article is proving the following four theorems. (In this
section, f'and g are not polynomials.)

THEOREM 3.1. Let k be an integer =1 and let f € C**{a, b, where a = 0 or
b =0, and f*(0) = 0. Then

EMf)
mEwH = ©

More precisely, there exists a constant M which depends only on a, b and k
such that, for every integer n > 2k,

EX) M
ELD) ~ Ewall )

This theorem cannot be improved in the sense that:
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THEOREM 3.2. For every integer N > 0 there exists a function g € CV¥|a, b},
a = 0or b =0, such that

E"(g) N

THEOREM 3.3. Let k be an integer =1 and let f € C*[a, b], wherea <0 < b
and {%0) = 0. Then

AL
PREG T

More precisely, there exists a constant M which depends only on a, b and k
such that, for every integer n >k,

EM) o, M
ES) © Ena7®)

This theorem cannot be improved in the sense that:

THEOREM 3.4. For every integer N = 0 there exists a function g € C¥[a, b],
a << 0 << b, such that

Ef(g) _
im k=N 1.
B Ey = +

LeMMA 3.5. Let fe C¥a, bl, k = 1, let a, = f®(0)/k! and let a,* be the
coefficient of x* in the polynomial of degree at most n of best approximation to
fonla,bl. Then

Enk(f) = — | ank - g I Enk(xk) - En(f) + l ay I Enl(xk)

Proof. From the definitions of E,(f), E,*(f) and a,* we obtain
E5(f(x) — a,*x*) = E,(f(x)). Now

E(—axt) = EM(—apx® -+ f(x) — f(x) + a,Fx* — a,FxF)
% E‘Tl (f(l) - anhxk) + Enk((ank - ak)xk) '{_ Enk(f(x))
< ELf(x) + | ay® — a | EA(XY) + E*(f(x)).
The lemma follows.

Proof of Theorem 3.1. Theorem 2.4 in [3] implies the existence of S;,
independent of », such that

l a-nk — g l < SkEn—zlc(f(Zk)): n > 2k.
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By Theorem 2.6 we know that there exists an ¥, independent of n such that

N

En‘(x‘) = ﬁ”— 5 n = 1.

So, by Lemma 3.5,

EMP) > 1 — SeNpEo () | Nilag|
Ef) P E(f) L nRE(f)

But lim,_ . F, .,(f*) = 0 and a; += 0. Hence

ELf) T m*E(f)

1, n>=1, 3.0

for some R, independent of n. Since fe C%[q, bl, Jackson’s theorem
[4, p. 127] implies that

. 1 \
Enf) =0 ( nek \;
So we have
. Ed(f)
1 = w0,
s B °

As [2, p. 39] there exists a constant K such that, for f'e CYaq, b],

K ,
Eﬂ(f) < 7{ En-l(f }z
the theorem follows from (3.1).

LEmMa 3.6. Let fe CV[a,b), a =0 or b =0, k = [N/2]+ 1. There
exists a constant K, such that

1

1
Ww(f(N),E), = 1.2,

EMf) < Ky
Proof. Let a,” be as in Lemma 3.5. Then

EXf) < Ef) + | ai” | EHx").

Indeed, E,4/) < EA(f(x) — a,*x") + EMa,*x*) and B,/ (x) — a,"%") =
En(f(x)).
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Theorems 3.1 and 3.2 in [3] imply that

] 1
| < Mg (10,1,

Thus

E (f) < E(f)
m¥o(f @ 1ny — aVo(fN, 1/n)

n (£, 1)
+‘MkN7c n'Z]cn—Nw(f(N)’ l/n) '

But by Jackson’s theorem [2, p. 39], E.(f)/n " w(f?™, 1/n) is bounded.

The lemma is proved.

Proof of Theorem 3.2. Letgx) =(x— (b —a))¥|{x— G —a)2]|. 1t
is known [7, p. 410] that

K;
En(g) 2 nNi]_ .

On the other hand,

K. 1 K, K
I3 < 2 (N) — 2 M3
E(8) < ny w(g ’n) S v on

by the preceding lemma. Theorem 3.2 follows.

Proof of Theorem 3.3. Theorem 2.8 in [3] implies the existence of S
independent of #, such that

l a'nk — dg I < SkEn—k(f(k)): n > ka

where a,* and a, are as in Lemma 2.5. By Theorem 2.7 we know that there
exists an N, , independent of n, such that

E H(x*) = _],,\{LE' , n>1

Hence, by Lemma 3.5,

EA() SNEaaF) | Nyl an]
D = T T T wE) T RED

But lim, ., E, (f®) = 0 and a, s 0. Therefore

\%

EXf) . R
EN CwED "2 @2
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Since f'= C*{a, b], Jackson’s theorem implies

1
n(f) =0 ( i?’")
so that we have

EM(f)
MED) T

(3.2) and the relation

Ef) < 2 Ea(r)

complete the proof.

LevMva 3.7. Let feCa, b], N =0, a <0 <b Suppose ithat
FVX) () < Klx—yls, 0<e<l, x,yela, bl Let k be an
integer =N + 1. There exists a constant K, satisfying

EX) < K; 1\1r+e n=1,2,..

Proof. Leta,*beasin Lemma 3.5. We have, as in the proof of Lemma 3.6,

Enk(f) < En(f) + | a,* | Enk(x").
Theorem 3.4 in [3] implies that
| a,*| < MpF-N+e,

Thus
EXNf) _ Edf) e

nN—€ = p-N-e + MN; nkp—N—<

because, by Theorem 2.7,
Ny
~ T

But by Jackson’s theorem, E,(f)/n—"—¢ is bounded. The lemma follows.
Proof of Theorem 3.4. Let g(x) = x| x|. We have

K.
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On the other hand, by the preceding lemma,

, M,
EMN8) <y -

IV. A REMARK AND A CONJECTURE

The relation
EJ(f) < Eff) + | an* | EJMxP),

where a," is as in Lemma 3.5, and the remark following the proof of
Theorem 2.7 show that

— E(f)
Lim
if fe Cla, b],0¢[a, b], E.f) > 1/C*" foralln >1,C > 1 and « < I.
We make the following conjecture: if fe C[—1, 1] and if ' does not exist
at some interior point of [—1, 1], then

< ©

— EM))
mEG <
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