Comparison between the Degrees of Approximation by Lacunary and Ordinary Algebraic Polynomials

Maurice Hasson*
Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02887

Communicated by G. G. Lorentz
Received June 1, 1978
DEDICATED TO THE MEMORY OF P. TURAN

I. Introduction

Let $C[a, b]$ denote the space of real valued continuous functions defined on $[a, b]$, endowed with the uniform norm denoted by $\left\|\|\right.$. Let $E_{n}(f)$ be the distance between the function $f \in C[a, b]$ and the subspace of algebraic polynomials of degree at most n and let $E_{n}^{k}(f)$ be the distance from f to the subspace of algebraic polynomials of degree at most n in which the coefficient of x^{k} is 0 . This paper is devoted to the following problem: find the functions $f \in C[a, b]$ for which

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{E_{n}^{k}(f)}{E_{n}(f)}=\infty, \quad k \geqslant 1 . \tag{1.1}
\end{equation*}
$$

Our work originated in a paper of Bak and Newman [1] on Muntz's theorem. This theorem [$9, \mathrm{p}$. 197] states that the polynomials of the form $\sum_{k=0}^{n} a_{k} v^{\lambda_{k}}$ are dense in $C[0,1]$ if

$$
0=\lambda_{0}<\lambda_{1}<\lambda_{2} \cdots, \quad \lim _{n \rightarrow \infty} \lambda_{n}=\infty \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty .
$$

In [1] the degree of convergence of such polynomials to a function $f \in C[0,1]$ is related to the modulus of continuity of $f, \omega(f$,$) . Let \lambda_{k}-$ $\lambda_{k-1} \geqslant 2$ in the above sequence and let $E_{n}{ }^{4}(f)=d\left(f,\left[1, x^{\lambda_{1}}, x^{\lambda_{2}}, \ldots, x^{\lambda_{n}}\right]\right)$ be the distance from f to the space generated by $\left(1, x^{\lambda_{1}}, x^{\lambda_{2}}, \ldots, x^{\lambda_{n}}\right)$. Then

$$
E_{n}{ }^{\Lambda}(f) \leqslant M \omega\left(f, \exp \left(-2 \sum_{k=1}^{n} \lambda_{k}\right)\right)
$$

for some constant M which does not depend on f. If $f(x)=\left|x-\frac{1}{2}\right|$,

* Current address: Department of Mathematics, Texas A\&M University, College Station, Texas 77843.
$x \in[0,1]$, this theorem implies that $E_{n}{ }^{k}(f) \leqslant K / n$ for a constant K independent of n. Indeed, let k be odd. Then

$$
\begin{aligned}
E_{n}{ }^{k}(f) \leqslant d\left(f,\left[1, x^{2}, x^{4}, \ldots, x^{2[n / 2]}\right]\right) & \leqslant M \omega\left(f, \exp \left(-2 \sum_{k=1}^{[n / 2]} \frac{1}{2 k}\right)\right) \\
& \leqslant N \omega\left(f, \frac{1}{n}\right) \leqslant \frac{K}{n}
\end{aligned}
$$

The proof is similar when k is even. Also we know [5, p. 171] that $E_{n}(f) \geqslant$ N / n with a constant N which does not depend on n. We conclude that, for every integer $k \geqslant 1$,

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{E_{n}^{k}\left(\left|x-\frac{1}{2}\right|\right)}{E_{n}\left(\left|x-\frac{1}{2}\right|\right)}<\infty . \tag{1.2}
\end{equation*}
$$

On the other hand, the classical proof of Muntz's theorem is based on the formula [9, p. 196] which gives the distance d_{n}, in $L_{2}[0,1]$, between x^{n} and $\left.x^{p_{1}}, x^{p_{2}}, \ldots, x^{p_{n}}\right]$, where $p_{i}>-\frac{1}{2} \forall i$:

$$
d_{n}=\frac{1}{(2 m+1)^{1 / 2}} \prod_{j=1}^{n} \frac{\left|m-p_{j}\right|}{m+p_{j}+1} .
$$

Now, let P_{n}, Q_{n} be polynomials of degree at most n such that

$$
\left\|x-P_{n}(x)\right\|=E_{n}^{1}(x)
$$

and

$$
\left\|x-Q_{n}(x)\right\|_{L_{2}[0,1]}=d_{L_{2}}\left(x,\left[1, x, \ldots, x^{n}\right]\right)
$$

We have

$$
\begin{aligned}
E_{n}^{1}(x) & =\left\|x-P_{n}(x)\right\| \geqslant\left\|x-P_{n}(x)\right\|_{L_{2}} \geqslant\left\|x-Q_{n}(x)\right\|_{L_{2}} \\
& =\frac{1}{3^{1 / 2}} \frac{1}{4} \frac{2}{5} \frac{3}{6} \cdots \frac{n-1}{n+2} \geqslant \frac{K}{n^{3}}, \quad n>1,
\end{aligned}
$$

for some constant K independent of n. Clearly $E_{n}(x)=0, n \geqslant 1$.
These were the observations which led us to conjecture that, given k, $(1,1)$ holds if $f \in C^{r}[0,1]$ for r large enough, where $C^{r}[0,1]$ is the subspace of $C[0,1]$ of r-times continuously differentiable functions. Indeed, (1,2) shows that f must be sufficiently smooth in order for $(1,1)$ to hold.

The following notations will be used throughout: If $f \in C[a, b]$ and if $a<a^{\prime}<b^{\prime}<b, E_{n}\left(f,\left[a^{\prime}, b^{\prime}\right]\right)$ denotes the degree of uniform approximation of $\left.f\right|_{\left[a^{\prime}, b^{\prime}\right]}$ by polynomials of degree at most n. We write $\|f\|_{\left[a^{\prime}, b^{\prime}\right]}$ for $\sup _{x \in\left[a^{\prime}, b^{\prime}\right]}|f(x)|$. Also P_{n}, Q_{n} will always stand for algebraic polynomials of degree at most n.

II. The Problem of Computing Ee(x_{a})

One of the basic tools for the investigation of the asymptotic behaviour of $E_{n}^{k}(f) / E_{n}(f)$ is knowledge of $E_{n}^{k}\left(x^{n}\right)$.

Theorem 2.1. Let k be an integer $\geqslant 1$. Then there exist positive constants N_{k} and M_{k} with the following property: for every integer $n \geqslant 1$,

$$
\frac{N_{k}}{n^{2 k}} \leqslant E_{n}^{k}\left(x^{k},[0,1]\right) \leqslant \frac{M_{k}}{n^{2 k}}
$$

The proof relies on the following lemmas.
Lemma 2.2. $\left\{1, x, \ldots, x^{k-1}, x^{k+1}, \ldots, x^{n}\right\}, 1 \leqslant k<n$, is a Chebychev system on [0, 1].

Proof. It follows from Rolle's theorem.
Lemma 2.3. $\quad E_{n}{ }^{k}\left(x^{k},[0,1]\right)=k!/\left|2^{k} T_{n}^{(k)}(-1)\right|, 1 \leqslant k<n$, where $T_{n}(x)=$ $\cos (n \operatorname{arcos} x)$ is the nth Chebychev polynomial.

Proof. There exist $n+1$ points on $[-1,1]$ where T_{52} takes the values $\pm T_{n} \|_{[-1, \mathrm{x}]}= \pm 1$ with alternating signs. So there exist $n+1$ points on $[0,1]$ where $P_{n}(x)=T_{n}(2 x-1)$ takes the values $\pm\left\|P_{n}\right\|[0,1]= \pm 1$ with alternating signs. It follows from Chebychev's alternation theorem $[4$, p. 30$]$ and the preceding lemma that $E_{n}{ }^{k}\left(x^{k},[0,1]\right)=1-\left(1 / a_{k}\right) P_{n}(x)+$ $x^{7}-x^{k} \|_{0,1]}=1 /\left|a_{k}\right|$, where a_{k} is the coefficient of x^{k} in P_{n}, and the lemma follows.

Lemma 2.4.

$$
\left|T_{n}^{(k)}(-1)\right|=\prod_{i=1}^{k} \frac{n^{2}-(i-1)^{2}}{(2 k-1)!!}
$$

where $(2 k-1)!!=1 \cdot 3 \cdot 5 \cdots(2 k-1)$.
Proof. $\quad T_{n}^{(k)}(-1)\left|=\left|T_{n}^{(k)}(1)\right|\right.$ because T_{n} is either odd or even, and $T_{n}^{(k)}(1)$ equals the above product [7, p. 226].

Theorem 2.1 follows now from Lemmas 2.3 and 2.4.
Theorem 2.5. Let k be an integer $\geqslant 1$. There exist positive constants N_{k} and M_{z} such that, for every integer $n \geqslant 1$,

$$
\frac{N_{k}}{n^{k}} \leqslant E_{n}^{k}\left(x^{k},[-1,1]\right) \leqslant \frac{M_{k}}{n^{k}}
$$

Proof. We first show that $E_{n}^{k}\left(x^{k},[-1,1]\right) \leqslant M_{k} / n^{k}$. Suppose that $n \equiv k(\bmod 2)$. Let $P_{n}(x)=\left(k!/ T_{n}^{(k)}(0)\right) T_{n}(x)$. Then

$$
E_{n}{ }^{k}\left(x^{x^{k}},[-1,1]\right) \leqslant\left\|-P_{n}(x)+x-x\right\|=\frac{k!}{\left|T_{n}^{(i)}(0)\right|} .
$$

Now, from the relation [7, p. 226, Eq. (47)]

$$
-T_{m}^{(k+1)}(0)=\left(m^{2}-(k-1)\right) T_{m}^{(k-1)}(0),
$$

and from

$$
T_{2 m}(0)=(-1)^{m}, \quad T_{2 m+1}^{\prime}(0) \doteq(-1)^{n} m, \quad m \geqslant 0
$$

we find that

$$
\left|T_{n}^{(k)}(0)\right| \geqslant K_{k} l^{k}, \quad n \geqslant 1
$$

It follows that

$$
E_{n}^{k}\left(x^{k},[-1,1]\right) \leqslant \frac{K_{k c}^{\prime}}{n^{k}}, \quad n \geqslant 1
$$

Suppose now that $n \neq k(\bmod 2)$. We have:

$$
\begin{aligned}
E_{n}^{k}\left(x^{k},[-1,1]\right) & \leqslant E_{n-1}^{k}\left(x^{k},[-1,1]\right) \leqslant \frac{K_{k}^{\prime}}{(n-1)^{k}} \\
& \leqslant \frac{K_{k}^{\prime \prime}}{n^{k}}, \quad n \geqslant 2
\end{aligned}
$$

It follows that

$$
\begin{equation*}
E_{n}^{k}\left(x^{k},[-1,1]\right) \leqslant \frac{M_{k}}{n^{k}}, \quad n=1,2, \ldots \tag{2.1}
\end{equation*}
$$

We now show the existence of a constant N_{1} such that

$$
E_{n}^{1}(x,[-1,1]) \geqslant \frac{N_{1}}{n}, \quad n=1,2, \ldots
$$

Let $P_{n}, P_{n}^{\prime}(0)=0$, satisfy

$$
\left\|P_{n}(x)-x\right\|=E_{n}^{1}(x) \leqslant \frac{M_{1}}{n}, \quad n \geqslant 1
$$

Now

$$
\left\|P_{n}^{\prime}(x)-1\right\|_{[-1 / 2,1 / 2]} \leqslant K_{1} n\left\|P_{n}(x)-x\right\|_{[-1,1]} \leqslant K_{1} M_{1}
$$

by Bernstein's inequality. It follows that

$$
\left\|P_{n}^{\prime}(x)\right\|_{[-1 / 2,1 / 2]} \leqslant M, \quad n=1,2, \ldots
$$

and

$$
\left\|P_{n}^{\prime \prime}(x)\right\|_{[-1 / 4,1 / 4]} \leqslant K n, \quad n=1,2, \ldots
$$

again by Bernstein's inequality. So we have

$$
P_{n}^{\prime}(x) \leqslant \frac{1}{2}, \quad x \in\left[0, \frac{1}{2 K n}\right], \quad n \geqslant \frac{2}{K},
$$

by the mean value theorem and the fact that $P_{n i}^{\prime}(0)=0$.
Again, by the mean value theorem,

$$
\begin{equation*}
P_{n}(x)-P_{n}(0) \leqslant \frac{x}{2}, \quad x \in\left[0, \frac{1}{2 K n}\right], \quad n \geqslant \frac{2}{K} . \tag{2.2}
\end{equation*}
$$

Suppose that

$$
P_{n}(0) \leqslant \frac{1}{8 K n}
$$

Then (2.2) implies

$$
\left|P_{n}\left(\frac{1}{2 K n}\right)-\frac{1}{2 K n}\right| \geqslant \frac{1}{8 K n}
$$

We have proved that

$$
\left\|P_{n}(x)-x\right\|_{[0,1 / 2 K n]} \geqslant \frac{1}{8 K n}
$$

so that

$$
E_{n}^{1}(x,[-1,1]) \geqslant \frac{N_{1}}{n} .
$$

We remark that we have actually proved: let P_{n} be a sequence of polynomials with $P_{n}^{\prime}(0)=0$ and $\left\|P_{n}(x)-x\right\|_{[-a, a]} \leqslant C / n$. Then $\left\|P_{n}(x)-x\right\|_{[-a, a]} \geqslant$ $D / n(0<a \leqslant 1)$. Now, let k be an integer $\geqslant 2$ and let P_{n} be a polynomial with $P_{n}^{(k)}(0)=0$ and

$$
\begin{equation*}
\left\|P_{n}(x)-x^{k}\right\|=E_{n}^{k}\left(x^{k},[-1,1]\right) \tag{2.4}
\end{equation*}
$$

We have, by repeatedly applying Bernstein's inequality,

$$
\begin{align*}
& \left\|P_{n}(x)-x^{k}\right\|_{[-1,1]} \\
& \quad \geqslant \frac{K_{1}}{n}\left\|P_{n}^{\prime}(x)-k x^{k-1}\right\|_{[-1+1 / k, 1-1 / k]} \geqslant \cdots \tag{2.5}\\
& \quad \geqslant \frac{K_{1} K_{2} \cdots K_{k-1}}{n(n-1) \cdots(n-(k-2))}\left\|P_{n}^{(k-1)}(x)-k!x\right\|_{[-1+(k-1) / k, 1-(k-1) / k]}
\end{align*}
$$

But, again by Bernstein's inequality and (2.1), we have

$$
\left\|P_{n}^{(k-1)}(x)-k!x\right\|_{[-1+(k-1) / k, 1-(k-1) / k]} \leqslant \frac{C_{k}}{n}
$$

The above remark and the fact that $P_{n}^{(k)}(0)=0$ yield

$$
\begin{equation*}
\left\|P_{n}^{(k-1)}(x)-k!x\right\|_{[-1+(k-1) / k, 1-(k-1) / k]} \geqslant \frac{D_{k}}{n} \tag{2.6}
\end{equation*}
$$

(2.4), (2.5) and (2.6) show the existence of a constant N_{k} such that, for every integer $n \geqslant 1$ and for $k \geqslant 2$,

$$
\begin{equation*}
E_{n}^{k}\left(x^{k},[-1,1]\right) \geqslant \frac{N_{k}}{n^{k}} \tag{2.7}
\end{equation*}
$$

By (2.3), (2.7) is also true for $k=1$. The proof of Theorem 2.5 is complete.
Theorem 2.6. Let $a<b$ and either $a=0$ or $b=0$. Let k be an integer $\geqslant 1$. Then there exist constants M_{k}, N_{k} such that

$$
\frac{N_{k}}{n^{2 k}} \leqslant E_{n}^{k}\left(x^{k},[a, b]\right) \leqslant \frac{M_{k}}{n^{2 k}}, \quad n=1,2, \ldots
$$

Proof. Suppose $a=0$. The polynomial $P_{n}(x)=T_{n}(2 x /(b-a)-1)$ has the alternation property (cf. proof of Lemma 2.3) on $[a, b]$ and $\left\{1, x, \ldots, x^{k-1}\right.$, $\left.x^{k+1}, \ldots, x^{n}\right\}$ is a Chebychev system on $[a, b]$. The proof of Lemma 2.3 shows that $E_{n}^{k}\left(x^{k},[a, b]\right)=k!/\left|P_{n}^{(k)}(0)\right|$ and $P_{n}^{(k)}(0)=\left(2^{k} /(b-a)^{k}\right) T_{n}^{(k)}(-1)$. The theorem follows by Lemma 2.4. The proof is similar if $b=0$.

Theorem 2.7. Let $a<0<b$. Let k be an integer $\geqslant 1$. Then there exist constants M_{k}, N_{k} such that

$$
\frac{N_{k}}{n^{k}} \leqslant E_{n}^{k}\left(x^{k},[a, b]\right) \leqslant \frac{M_{k}}{n^{k}}, \quad n=1,2, \ldots
$$

Proof. The proof of Theorem 2.5 shows that our assertion holds for an interval $[-\alpha, \alpha](\alpha>0)$. The theorem follows from the relation

$$
E_{n}^{k}\left(x^{k},[-\alpha, \alpha]\right) \leqslant E_{n}^{k}\left(x^{k},[a, b]\right) \leqslant E_{n}^{k}\left(x^{k},[-\beta, \beta]\right)
$$

where $\alpha=\min (|a|,|b|)$ and $\beta=\max (|a|,|b|)$.
Remark. If $0 \notin[a, b]$, then $E_{n}^{k}\left(x^{k},[a, b]\right) \rightarrow 0$ as $n \rightarrow \infty$, at an exponential rate. Indeed $\left\{1, x, \ldots, x^{k-1}, x^{k+1}, \ldots, x^{n}\right\}$ is a Chebychev system on $[a, b]$. Consider the polynomial $P_{n}(x)=T_{n}(2(x-a) /(b-a)-1)$. If $a>0$ or $b<0$ (and $a<b$), then $-1<-1-2 a /(b-a)$, and our claim reduces to estimating $T^{(k)}$ at that point. From the fact that $T_{n}(x)=\cosh (n \operatorname{arc} \cosh x)$ for $x>1[6, \mathrm{p} .5]$, we see that $T_{n}^{(k)}(\alpha)$ grows exponentially for $|\alpha|>1$. The assertion follows.

Let us notice that a good asymptotic majorant of $E_{n}^{k}\left(x^{k},[0,1]\right)$ could have been derived from a proof of Muntz's theorem [8], or by using methods of functional analysis [2, p. 125]. However, these techniques do not yield a good minorant which will be needed. Moreover, these techniques do not seem to yield any information on $E_{n}{ }^{k}\left(x^{k},[-1,1]\right)$.

III. Asymptotic Behavior of $E_{n}{ }^{k}(f) / E_{n}(f)$

The theorems of Section II and knowledge of the behavior of the derivatives of polynomials of best approximation [3] will be our tools in the investigation of this problem.
The purpose of this article is proving the following four theorems. (In this section, f and g are not polynomials.)

Theorem 3.1. Let k be an integer $\geqslant 1$ and let $f \in C^{2 k}[a, b]$, where $a=0$ or $b=0$, and $f^{(k)}(0) \neq 0$. Then

$$
\lim _{n \rightarrow \infty} \frac{E_{n}^{k}(f)}{E_{n}(f)}=\infty .
$$

More precisely, there exists a constant M which depends only on a, b and k such that, for every integer $n>2 k$,

$$
\frac{E_{n}^{k}(f)}{E_{n}(f)} \geqslant \frac{M}{E_{n-2 k}\left(f^{(2 k)}\right)} .
$$

This theorem cannot be improved in the sense that:

Theorem 3.2. For every integer $N \geqslant 0$ there exists a function $g \in C^{N}[a, b]$, $a=0$ or $b=0$, such that

$$
\overline{\lim }_{n \rightarrow \infty} \frac{E_{n}^{k}(g)}{E_{n}(g)}<\infty, \quad k \geqslant\left[\frac{N}{2}\right]+1
$$

Theorem 3.3. Let k be an integer $\geqslant 1$ and let $f \in C^{k}[a, b]$, where $a<0<b$ and $f^{(k)}(0) \neq 0$. Then

$$
\lim _{n \rightarrow \infty} \frac{E_{n}{ }^{k}(f)}{E_{n}(f)}=\infty
$$

More precisely, there exists a constant M which depends only on a, b and k such that, for every integer $n>k$,

$$
\frac{E_{n}^{k}(f)}{E_{n}(f)} \geqslant \frac{M}{E_{n-k}\left(f^{(k)}\right)} .
$$

This theorem cannot be improved in the sense that:
Theorem 3.4. For every integer $N \geqslant 0$ there exists a function $g \in C^{N}[a, b]$, $a<0<b$, such that

$$
\varlimsup_{n \rightarrow \infty} \frac{E_{n}^{k}(g)}{E_{n}(g)}<\infty, \quad k \geqslant N+1
$$

Lemma 3.5. Let $f \in C^{k}[a, b], k \geqslant 1$, let $a_{k}=f^{(k)}(0) / k!$ and let $a_{n}{ }^{k}$ be the coefficient of x^{k} in the polynomial of degree at most n of best approximation to f on $[a, b]$. Then

$$
E_{n}^{k}(f) \geqslant-\left|a_{n}^{k}-a_{k}\right| E_{n}^{k}\left(x^{k}\right)-E_{n}(f)+\left|a_{k}\right| E_{n}^{k}\left(x^{k}\right)
$$

Proof. From the definitions of $E_{n}(f), E_{n}{ }^{k}(f)$ and $a_{n}{ }^{k}$ we obtain $E_{n}{ }^{k}\left(f(x)-a_{r}{ }^{k} x^{k}\right)=E_{r}(f(x))$. Now

$$
\begin{aligned}
E_{n}^{k}\left(-a_{k} x^{k}\right) & =E_{n}^{k}\left(-a_{k} x^{k}+f(x)-f(x)+a_{n}{ }^{k} x^{k}-a_{n}{ }^{k} x^{k}\right) \\
& \leqslant E_{n}^{k}\left(f(x)-a_{n}{ }^{k} x^{k}\right)+E_{n}^{k}\left(\left(a_{n}^{k}-a_{k}\right) x^{k}\right)+E_{n}^{k}(f(x)) \\
& \leqslant E_{n}(f(x))+\left|a_{n}^{k}-a_{k}\right| E_{n}^{k}\left(x^{k}\right)+E_{n}^{k}(f(x)) .
\end{aligned}
$$

The lemma follows.
Proof of Theorem 3.1. Theorem 2.4 in [3] implies the existence of S_{k}, independent of n, such that

$$
\left|a_{n}^{k}-a_{k}\right| \leqslant S_{k} E_{n-2 k}\left(f^{(2 k)}\right), \quad n>2 k .
$$

By Theorem 2.6 we know that there exists an $N_{k c}$ independent of n such that

$$
E_{n}^{k}\left(x^{k}\right) \geqslant \frac{N_{i k}}{n^{2 k}}, \quad n \geqslant 1
$$

So, by Lemma 3.5,

$$
\frac{E_{n}^{k}(f)}{E_{n}(f)} \geqslant-1-\frac{S_{k} N_{k} E_{n-2 k}\left(f^{(2 k)}\right)}{n^{2 k} E_{n}(f)}+\frac{N_{k}\left|a_{k}\right|}{n^{2 k} E_{n}(f)} .
$$

But $\lim _{n \rightarrow \infty} E_{n-2 k}\left(f^{(2 k)}\right)=0$ and $a_{k} \neq 0$. Hence

$$
\begin{equation*}
\frac{E_{n}^{k}(f)}{E_{n}(f)} \geqslant \frac{R_{k}}{n^{2 k} E_{n}(f)}-1, \quad n \geqslant 1, \tag{3.1}
\end{equation*}
$$

for some R_{k} independent of n. Since $f \in C^{2 k}[a, b]$, Jackson's theorem [4, p. 127] implies that

$$
E_{n}(f)=o\left(\frac{1}{n^{2 k}}\right)
$$

So we have

$$
\lim _{n \rightarrow \infty} \frac{E_{n}^{k}(f)}{E_{n}(f)}=\infty
$$

As [2, p. 39] there exists a constant K such that, for $f \in C^{1}[a, b]$,

$$
E_{n}(f) \leqslant \frac{K}{n} E_{n-1}\left(f^{\prime}\right),
$$

the theorem follows from (3.1).
Lemma 3.6. Let $f \in C^{N}[a, b], a=0$ or $b=0, k \geqslant[N / 2]+1$. There exists a constant K_{k} such that

$$
E_{n}^{k}(f) \leqslant K_{k} \frac{1}{n^{N}} \omega\left(f^{(N)}, \frac{1}{n}\right), \quad n=1,2, \ldots
$$

Froof. Let $a_{n}{ }^{k}$ be as in Lemma 3.5. Then

$$
E_{n}^{k}(f) \leqslant E_{n}(f)+\left|a_{n}^{k}\right| E_{n}^{k}\left(x^{k}\right)
$$

Indeed, $E_{n}^{k}(f) \leqslant E_{n}{ }^{k}\left(f(x)-a_{n}{ }^{k} x^{k}\right)+E_{n}{ }^{k}\left(a_{n}{ }^{k} x^{k}\right)$ and $E_{n}{ }^{k}\left(f(x)-a_{n}{ }^{k} x^{k}\right)=$ $E_{n}(f(x))$ 。

Theorems 3.1 and 3.2 in [3] imply that

$$
\left|a_{n}^{k}\right| \leqslant M_{\kappa_{k}} \eta^{2 k-N} \omega\left(f^{(N)}, \frac{1}{n}\right)
$$

Thus

$$
\frac{E_{n}^{k}(f)}{n^{-N} \omega\left(f^{(\bar{N})}, 1 / n\right)} \leqslant \frac{E_{n}(f)}{n^{-N} \omega\left(f^{(N)}, 1 / n\right)}+M_{k} N_{k} \frac{n^{2 k-N} \omega\left(f^{(N)}, 1 / n\right)}{n^{2 k} n^{-N} \omega\left(f^{(N)}, 1 / n\right)}
$$

But by Jackson's theorem [2, p. 39], $E_{n}(f) / n^{-N} \omega\left(f^{(N)}, 1 / n\right)$ is bounded. The lemma is proved.

Proof of Theorem 3.2. Let $g(x)=(x-(b-a) / 2)^{N}|x-(b-a) / 2|$. It is known [7, p. 410] that

$$
E_{n}(g) \geqslant \frac{K_{1}}{n^{N+1}}
$$

On the other hand,

$$
E_{n}^{k}(g) \leqslant \frac{K_{2}}{n^{N}} \omega\left(g^{(N)}, \frac{1}{n}\right) \leqslant \frac{K_{2}}{n^{N}} \frac{K_{3}}{n}
$$

by the preceding lemma. Theorem 3.2 follows.
Proof of Theorem 3.3. Theorem 2.8 in [3] implies the existence of S_{k} independent of n, such that

$$
\left|a_{n}^{k}-a_{k}\right| \leqslant S_{k} E_{n-k}\left(f^{(k)}\right), \quad n>k,
$$

where $a_{n}{ }^{k}$ and a_{k} are as in Lemma 2.5. By Theorem 2.7 we know that there exists an N_{k}, independent of n, such that

$$
E_{n}^{k}\left(x^{k}\right) \geqslant \frac{N_{k}}{n^{k}}, \quad n \geqslant 1
$$

Hence, by Lemma 3.5,

$$
\frac{E_{n}^{k}(f)}{E_{n}(f)} \geqslant-1-\frac{S_{k} N_{k} E_{n-k}\left(f^{(k)}\right)}{n^{k} E_{n}(f)}+\frac{N_{k}\left|a_{k}\right|}{n^{k} E_{n}(f)}
$$

But $\lim _{n \rightarrow \infty} E_{n-k}\left(f^{(k)}\right)=0$ and $a_{k} \neq 0$. Therefore

$$
\begin{equation*}
\frac{E_{n}^{k}(f)}{E_{n}(f)} \geqslant \frac{R_{f}}{n^{k} E_{n}(f)}-1, \quad n \geqslant 1 \tag{3.2}
\end{equation*}
$$

Since $f \in C^{\not}[a, b]$, Jackson's theorem implies

$$
E_{n}(f)=o\left(\frac{1}{n^{2}}\right)
$$

so that we have

$$
\lim _{n \rightarrow \infty} \frac{E_{n}^{k}(f)}{E_{n}(f)}=\infty
$$

(3.2) and the relation

$$
E_{n}(f) \leqslant \frac{K}{n} E_{n-1}\left(f^{\prime}\right)
$$

complete the proof.
Lemma 3.7. Let $f \in C^{N}[a, b], \quad N \geqslant 0, \quad a<0<b$. Suppose that $\left|f^{(N)}(x)-f^{(N)}(y)\right| \leqslant K|x-y|^{\epsilon}, 0<\epsilon \leqslant 1, x, y \in[a, b]$. Let k be an integer $\geqslant N+1$. There exists a constant K_{k} satisfying

$$
E_{n}^{k}(f) \leqslant K_{k} \frac{1}{n^{N+\epsilon}}, \quad n=1,2, \ldots
$$

Proof. Let $a_{n}{ }^{k}$ be as in Lemma 3.5. We have, as in the proof of Lemma 3.6,

$$
E_{n}^{k}(f) \leqslant E_{n}(f)+\left|a_{n}^{k}\right| E_{n}^{k}\left(x^{l}\right)
$$

Theorem 3.4 in [3] implies that

$$
\left|a_{n}{ }^{k}\right| \leqslant M_{k} n^{k-N+\varepsilon} .
$$

Thus

$$
\frac{E_{n}^{k}(f)}{n^{-N-\epsilon}} \leqslant \frac{E_{n}(f)}{n^{-N-\epsilon}}+M_{l i} N_{k} \frac{n^{2-N-\epsilon}}{n^{k} n^{-N-\xi}}
$$

because, by Theorem 2.7,

$$
E_{n}^{k}\left(x^{k}\right) \leqslant \frac{N_{k}}{n^{k}} .
$$

But by Jackson's theorem, $E_{n}(f) / n^{-N-\epsilon}$ is bounded. The lemma follows.
Proof of Theorem 3.4. Let $g(x)=x^{N}|x|$. We have

$$
E_{n}(g) \geqslant \frac{K_{1}}{n^{N+1}}
$$

On the other hand, by the preceding lemma,

$$
E_{n}{ }^{k}(g) \leqslant \frac{M_{k}}{n^{N+1}}
$$

IV. A Remark and a Conjecture

The relation

$$
E_{n}^{k}(f) \leqslant E_{n}(f)+\left|a_{n}^{k}\right| E_{n}^{k}\left(x^{k}\right),
$$

where $a_{n}{ }^{r}$ is as in Lemma 3.5, and the remark following the proof of Theorem 2.7 show that

$$
\varlimsup_{n \rightarrow \infty} \frac{E_{n}^{k}(f)}{E_{n}(f)}<\infty
$$

if $f \in C[a, b], 0 \notin[a, b], E_{n}(f) \geqslant 1 / C^{n^{\alpha}}$ for all $n \geqslant 1, C>1$ and $\alpha<1$.
We make the following conjecture: if $f \in C[-1,1]$ and if f^{\prime} does not exist at some interior point of $[-1,1]$, then

$$
\varlimsup_{n \rightarrow \infty} \frac{E_{n}^{k}(f)}{E_{n}(f)}<\infty
$$

Acknowledgments

I am grateful to Professors G. G. Lorentz and O. Shisha for their interest in my work.

References

1. T. Bak and D. J. Newman, Müntz-Jackson theorems in $L^{p}[0,1]$ and $C[0,1]$, Amer. J. Math. 94 (1972), 437-457.
2. R. P. Feinerman and D. J. Newman, "Polynomial Approximation," William \& Wilkins, Baltimore, 1974.
3. M. Hasson, Derivatives of the algebraic polynomials of best approximation, J. Approximation Theory 29 (1980), 91-102.
4. G. G. Lorentz, "Approximation of Functions," Holt, Rinehart \& Winston, New York, 1966.
5. I. P. Natanson, "Constructive Function Theory," Vol. I, Ungar, New York, 1964.
6. T. Rivlin, "The Chebyshev Polynomials," Wiley, New York, 1974.
7. A. F. Timan, "Theory of Approximation of Functions of a Real Variable," Macmillan, New York, 1963.
8. M. von Golitschek, Erweiterung der Approximationssatze von Jackson in Sinne von Ch. Muntz, II, J. Approximation Theory 3 (1970), 72-86.
9. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
